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Frequency Response Analysis of Cylindrical Shells Conveying
Fluid Using Finite Element Method
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A fimte element vibration analysis of thin-walled cylindrical shells conveying fluid with
uniform velocity s presented The dynamic behavior of thin-walled shell 15 based on the
Sanders’ theory and the fluid m cyhndiical shell 1s considered as mviscid and mcomptessible so
that 1t satisfies the Laplace’s equation A beam-ltke shell element 1s used to reduce the number
of degrees—of-freedom by restricting to the circumferential modes of cylindrical shell An
estimation of frequency response function of the pipe considering of the coupled effects of the
internal fluid 1s presented A dynamic coupling condition of the interface between the fluid and
the structuie 1s used The effective thickness of flurd according to circumferentral modes 1s also
discussed The influence of fluid velocity on the frequency response function s illustrated and
discussed The results by this method are compared with published 1esults and those by

commercial tools
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Beam-like Shell Element, Effective Thickness

1. Introduction

The dynamic behavior of a cylindrical shell
conveying fluid 1s a practical interest in the field
of the power plants or oil pipelines The struc-
wural characteristics of cylindiical shells can be
anatyzed by the commercial softwme such as
Nastran The commercial software for structural
analysis deals with wteinal flmd as added mass
However, the internal fluid with velocity has
effects on not only mass but also damping and
stiffness of the shell structure The added mass
of the internal fluid changes according to the
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circumferential mode The pipe system with fhud
ffows has studied for a long time These studies
dealt with pipes as Euler-Bernoullt beam, Timo-
shenko beam angd thin cylmdrical shell The
ptpe which behaves hke a beam was surveyed
by Paidoussss and Issid {1974) They discussed
the dynamics and stability of pipes conveying
flurd with various boundary condittons and a
steady and a turbulent flow Ginsberg {1973)
carried out the stability analysis, based on the
Floquet theory, of the ptpe with a pulsating flow
Paidoussts and Sundararajan {1975) developed
numerical methods to check whether a point hes
1n the stable or the unstable region by calculating
the determinant of a large matrix for every pownt
1n the parametiic space

The dynamics of thin cylindrical shell s stu-
died extensively by Donnell {1993), Love {1952)
and Sanders (1963) These shell theories are used
to solve the behavior of pipes conveying fluid
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Mazuch et al (1996) studied thun walled shells
m contact with inviscid, incompressible fluid by
finite element method and expertment The naru-
ral frequencies and the mode shapes for the free
vibrations of shell were computed and measured
Jam (1974) investigated the dynamics of ortho-
tropic cylindrical shell. He used the Love’s shell
theory and potential flow theory. A similar case
for the compressible fluid was studied by Chen
et al (1997) Selmane and Lakis (1997) presented
the vibration of an open amsotropic shell with
flowing floid They investigated the influence of
flowing fluid on the vibration of the shell Zhang
et al.(2001) presented the dynamics of the thin
shell conveying fluid by applying Sanders’ thin
shell theory He used the finite element method to
analyze the shell and the fluid Lee et al.(1999)
developed the a nonlmear finite element program
using 3-D degenerated shell element and the first
order shear deformation theory to consider the
large deformation of the clamped laminated cy-
lindrical shell Ryu et al (2004) mvestigated the
stress on orthotropic composite cylindrical shetls
using the squation of Donnell’s theory and pres-
ented the result as the stress concentration factor.
However, most of previous works were mterested
i only the natural frequencies or the stability
analysis The frequency response characteristics
of forced vibration of the c¢ylindrical shell con-
veying fluid have not been discussed.

In this paper, a cylindrical shell conveying
fluids 1s modeled by finite element method based
on Zhang et al (2001} m order to develop the
frequency response analysis of the forced vibra-
tion The dynamic behavior of ¢ylindrical shell
15 assumed to satisfy the Sanders’ thin shell theo-
ry The fluid is assumed to satisfy the Laplace’s
equation. A beam-like shell element 15 used to
reduce the number of nodes because shell element
needs lots of nodes. A dynamic pressure of the
fluid 1s obtamed from the compatibility condition
that the radial component of the internal fluid
and the shell structure has the same velocity. This
method does not need to generate meshes for the
mternal fluid because the pressure in the flwid
15 solved analytically The effective mass of the
fluid 1s obtained according to the circumferential

mode The velocity of fluid has effects on the
dampmg and the stiffness of the pipe The fre-
quency response function of the pipe with taking
mto consideration of the coupled effects of the
fluxd 1s presented Some numerical results by
this method are compared with those by Nastran
structural analysis soft-
ware, and expertmental results of previous work

(Mazuch et al, 1996)

{2001), commercial

2. Finite Element Formulation

2.1 Dynamics of cylindrical shell

A cyhndrical shell conveying internal fluid s
modeled as shown in Fig 1. The Sanders’ thin
shell theory 15 used to derive the equation of
motion of the cylindrical shell That 1s, the shell
thickness 1s infinitesimal 1n comparison with the
radius of curvature (1¢, R/h>10), the displace-
ment 18 small, and the shell wall thickness remains
constant, The fimte element method 1s used to
analyze the dynanucs of the cylindrcal shell
containing fluid The kinetic energy, potential
energy and wirtual work which are acting on
element can be expressed as follows

To= [ pdlu)'{u)dA, ()
Ue:%’/;s{e}r[D]{e}dAs (2)

oW=[ (su) {(ps)+(a:hdAs  (3)
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Fig. 1 A model of cylindrical shell conveying inter-
nal flusd
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where ps 1s pressure of the fluid acting on the
surface of the cylindrical shell and ¢s 1s external
force acting to cylindrical shell The relation of
stramn vector { &} and displacement vector { %} 1s
given by

{e}=[B){u} (4)

And, the relation of stress vector { ¢} and strain
vector { &} can be expressed by

{o)=[Dl{e} (5)

where

{5}={NH, Nﬂa, Nxa, Mxx, Maa, an}T:[D]{S}
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The shell element type could be used to formu-
late the cylindrical shell But 1t needs lots of
element generation which cause the problems of
memories and computations Let us assume the
displacement of a cylindrical shell by the follow-
ing Fourler’s cosine expansion

fi={ 1x cos n8, esmn 8, u, cos n6}"  (6)

where 2%y, #s and u, are the displacements of
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shell m axial, tangential and radial direction
The circumferential modes of axial and radial
displacements are assumed as cos nd{n=0, 1,
2, - ), and that of tangential mode 15 assumed
as s n8(n=0, 1, 2, ) This assumption 1§
{Petyt,
1990) Figure 2 shows the circumferential mode
shapes according to the circumferential mode

reasonable for circular cross-section

number (3). This assumption makes 1t possible
not to generate meshes m circumferential direc-
tion, which gives the reduction of degree—of-
freedom 1n finite element formulation This type
of element 15 called beam-like shell element in
this paper The beam-like shell element generate
meshes the same as beam element
element formulation, the displacements 1 ele-

For finite

ments should be expressed by shape function and
nodal displacements as follows

=[N () M(x)}{Z*‘}=[Nsx}{ux}e ()

X7

o= Nal) N4<x)}{Z"‘}=[Nsa]{ug}e (8)

47

Un

w=[M) Nel) Do) ()] ¢ L =[Nad () (9)

Un

¥

The radial displacement of cylindrical shell can
be assumed to behave like a lateral displacement
of a beam Thus, the shape function in Eq (9} 1s
the same as that of lateral vibration of a beam.
The ¢=23au,/dx denotes the slope of %, So, the
displacements 1 elements can be simply written

as follows -
{uy={wux uo ur}"=[N;){ut} (10)
O O
rn=0 n=1 n=

Fig. 2 Circumferential mode shapes according to the
circumferential mode number (1)
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where

(11)

Here, [N:] 1s a shape function matrix and {#}

{ﬁ}:{ﬁm o Un 051 Uy 226; 3_{1‘: ¢’J}T

18 a nodal displacement vector Any shape func-
tion, N,(i=1, --, 8), can be defined by user
Lmear functions of shape functions are used 1n
this paper

Substituting Egs. {4}, (5) and (10) into Eqs
{1)-(3) gves the mass, the stiffness matnx and
the force vector of the cylindrical structure as
follows

[m] s:j;spsk[Ns] T[NSI dAs

2r plp (12)
—oshR [ [ “[N:I"[Ns)dxde

ko= [ B LD(B)dA,

2 ple (13)
=R [ [ [BY[DI(Bldxdo

{f}s='£ [Nsr] TﬁddAs'f'Ls[Ns] TasdAs (14)

whare g5 18 the density of shell and R 1s a radig
of cross—section and % 1s a wall thickness The
first term 1n Eq. (14} 15 the coupling effect of the
ftutd, The pressure py of the fluid at the ier-
face acts normally on the structure of cylindrical
shell The second term of Eq (14) is equivalent
force due to external distributed force gs

2.2 Dynamics of internal fluid

It 15 assumed that the flmud m a cylindrical
shell 1s mcompiessible, irrotational and inviscid
s0 that the behavier of fluid satisfies the La-
palce’s equation. The Laplace’s equation m cylin-
drical polar coordinate 15 as follows

Fo 1 PO 82@1

0P
Vz@:ayz R T

v =0 (]5)
where @ 1s the velocity potential of the fluid
The velocity of flmid, ¥, can be obtammed from
=V @ A method of separation of
variable 15 used to solve Eq (15) The potential

function s assumed as follows:

T(rnix, 0, £)

the relation

O{r, 8. x, 1) = (16)
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The general solution ¥ (#) can be easily ob-
tained by substituting Eq (16) mto Eq. (15) as
follows

U{r)=Clx(Ar) + CYalAr) {17}

where C and b are constant Here, [, (A7) and
Y, (A7) denote the Bessel function of the first
and second kind of order # In order to have
finite value of pressure 1n the center of the cross-
section (¥=0), C; must be zero

To be fully coupled between the shell and
fluid, the radial velocities of the shell and fluid
must be the same at the interface Thus, the fol-
lowing companubility condition can be obtained

o0 __ Ouy 8ur
vr=5""5t U 5 |

(18)
Here, ] 1s the steady veloctty of the flimd Sub-

stituting Eq {17} and Eq (18) into Eq (16)
yields

Oy, 8, x, ©)=

J(A7) ( Jur

af'tr
R vt TU s ). 019

ox

This characteristic values, A, can be obtained
fiom the characteristic equation (Zhang et al,
2001} The velocity of mternal fluid can be ob-
tained from velocity potential function as fol-

lows
e
dx
v 1 90
U$Ua+g=?7§§+g(20)
L'r '@
ar

The dynamic pressure of the fluid can also be
obtained from velocity potential

p=—0,(0+U 52 1)

where pr 1s the density of flmd

2.3 Coupled equation of motion

The dynamic pressure of fluud acting on the
surface of cylindrical shell can be obtamed by
substituting BEq (9} and Eq {19} into Eq (21),
which vields
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pdzépf([Nsr]{ﬁ}+2U[Nér}{3i}

Jn{AR)
+DPING HapRe (200
tuDRe LR o7
Substituting Eq (22) mto Eq (14} and taking
their 1eal part, the equation of motion of a cyln-
drical shell with taking into consideration of the
coupled effects of nternal fluid yrelds

(Imls+iml i {ut+Tc] A}
(LR A L)) ()= ), @3

) (22)

where,
[mly=[ o/ INGAT (N hedAs  (24)

3[st]

[e)=2U [ [N A, (23)

_ d[Nsr]” a[Nsr]

[l=— U [ a2 ydds (26)
where [#]s, [£]s 1s given by Eq {12) and Eq
{13) Here, sy shows the effective thickness of
flmid grven as follows

J(AR)
(8]:1(&??‘?/87)

The effective thickness of fluid depends on the
order of circumferential mode and the charac-
teristic value The velocity of internal fluid makes
effects on damping and stuffness matrix of the
structure of cylindrical shell The stationary fluid,
velocity [7=0, acts only on mass matrix as an
added mass

hr=Re =¥, 2, {27

24 Frequency response

The characteristic value, A, depends on the
order, n, of circumferential mode And the effec-
tive thickness of flud, %y, given in Eq {27,
depends on the characteristic value A Thus, the
effective thickness, /s, can be obtained according
to the order # The coupled equation of motion of
a cylindrical shell conveymg fluid, given m Eq.
{23), must be solved according to the order, #, of
circumferential mode

To calculate the frequency response function,
let us assume the external harmonic force applied
to cylindnical shell as

Copyright (C) 2005 NuriMedia Co., Ltd.

{7 }e={F}e™ (29)

The beam-like shell element can reduce the de-
gree-of-freedom by assuming the circumferential
modes Instead, the equation of motion given m
Eq. {23} should be solved for every circumferen-
tizl mode, #=0, 1, 2, - - Refering to Eq (23}, the
harmonic response of #-th order circumferential
mode, { # }», can be determined as the solution of
the following algebraic equation

[{[fls+[k]s) —a?(Em]s+[m]s) (30)
+rolcldaduin=1{7}s
where,

{ﬁ}n={ U, Uon, ﬂm}T

Since equations of motion are given by the
superposition of the solution according to the
order, # The displacement of a cylindrical shell
can be obtamed as follows

Ux— zoaxn cos ﬂge;(mt—a,,x) (3 l)
=

o= Z‘. o SIN 10" W40 (32)

= Zoz?m cos ple?@i=ia® (33)
=

The frequency response function (FR F ) can be
estimated from Eq (30) by setting external force
equal to umty

3. Numerical Examples

A straight cylindrical shell with length L=
0231 m, rtadius R=007725 m and thickness k=
00015 m was considered as a numerical model
The material of shell was taken as steel with
density ps=T800 kg/m?®, Poisson’s ration =073
and Young’s Modulus £=205% 10" N/m® The
first case was a shell not containing fluid The
second case was a shell containig stationary
fluid The results by the presented method 1n the
first and second case were compared with those
by Nasiran Final case is a shell with the internal
flud which has uniform velocity All cases have
clamped-free boundary conditions as shown n
Fig 3
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Table 1 Degree of freedom of analysis model
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Table 2 Natural frequency of the shell without fluid

Nastran Mode Nutural Frequency [Hz]
Presented
(shell element) Experiment Presented
Nastran .
The number of m | n |{{Mazuch et al,, {beam-like
, . 36 - {shell element}
circumferential node 1996} shell element)
The number of axial node 21 21 113 616 643 635
The number of total node 756 21 1|2 708 818 816
D.O.F per node 5 4 14 45 983 948
Total D.O.F of model 3780 48 1]5 1479 1572 1480
214 1628 1709 1657
11 - 1824 1827
f B JE 1851 1939 1844
- E : 23 1969 2074 2039
- ' | ‘ 106 2151 2349 2154
17 e i 216 — 2581 2387
{a) Nastran (b} Presented model {beam-
{shell element} like shell element) ,
Fig. 3 Element Type used in Numerical example 0.1
QXi}}
-]
Figure 3 shows the element type used m the e
numerical example. The shell element used in ] s
Nastran has 5 degree of freedom per node and 1
L. . . w7
needs additional division into 36 elements in e
circumferential direction. But the presented mo- o
del doesn’t need the circumferential element and 0
has 4 degree of freedom per node. The reason is 11 ' . : ;
) 9 00 1006 1560 2000
that the presented model has assumed the circum- re izt

ferential mode analytically. Table 1 shows the
number of nodes and degrees-of-freedom used
for the analysis. The cylindrical shell was divided
equally into 20 elements in the axial direction
for both Nastran (shell clement) model and the
presented (beam-like shell element) model. So,
the number of degree—of-freedom by the present-
ed method was further less than that by Nastran.
Instead, the presented method must solve the
equations of motion for every order of circum-
ferential mode, #=0, 1, 2, -+

3.1 A cylindrical shell without fluid

Table 2 showed the results by the experiments
(Mazuch et al., 1996), Nastran (2001} and the
presented method. Here, # is the order of a cir-
cumferential mode and e is the order of an axial
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Fig. 4 A typical receptance of the shell according to
the order of » circumferential mode

mode. Calculating results correspond well with
experimental results. Therefore, natural frequen-
cies of the shell can be obtained effectively by
using a few elements. Figure 4 showed the F.R.F.
of the shell according to the order of the cir-
cumferential mode. An external force in radial
direction, Fr, was applied on cylindrical shell
and receptance {(displacement/force} was obtain-
ed at the driving point. Figure 5 showed the
comparison of the F.R.F. with the presented
method and Nastran. The summation of the
receptances shown in Fig. 4 is equal to the solid
line in Fig. 5. The presented method showed the
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Fig. 5 Receptance of the empty shell

reasonable results for both radial and axial com-
ponent comparing with the results by Nastran.
The discrepancy of F.R.F. is due to the dis-
crepancy of natural frequencies shown in Table 2.

3.2 A cylindrical shell with stationary fluid

In case that the shell is containing stationary
fluid, the fluid has an effect on the structure of
cylindrical shell as an added mass. Table 3 show-
ed that the natural frequencies decreased for all
modes comparing with the empty shell. The nu-
merical results correspond well with experimental
results {(Mazuch et al, 1996). Table 4 showed
the thickness (f,) of fluid which has the effect as
an added mass according to the circumferential
mode. At the first circumferential mode, the thick-
ness of fluid was the same as the radius of shell.
It means the fluid acts entirely on the added mass.

Table 3 Nutural frequency of the shell with station-

ary fluid
Mode Natural Frequency [Hz]

Experiment Presented
m!n |{Mazuch et al, (qhglaz;{r::em\ {beam-like

1996) - “|shell element)

1k 388 Y 373
12 20 | 4% 434
4] 628 652 602
1] - 1036 883
1]s 1027 1092 996
204 1094 1140 1054
2|5 1299 1360 1242
E 1245 1306 1202
16l 1546 1699 | 1515
FIDEE 1885 1680

Table 4 Effective thickness according to the order of
circumferential mode

b7 ! hf/R
| (000
2 0500
3 0.1
4 0.251
- 5 7 0202

But, the higher the circumferential modes, the
less the effective thickness of fluid acts on the
shelt. Figure 6 shows the F.R.FF. by Nasran and
the presented method. The results have a little dif-
ference. The reason is that Nastran and the pres-
ented method have a difference considering the
effect of the internal fluid. The added mass of the
fluid is considered to be constant in Nastran, but
in this paper, not only the added mass but alse the
stiffness and the damping vary according to the
circumferential mode.

3.3 The effects of velocity of internal fluid
on FRF and nartural frequency

When the fluid has a constant velocity, it in-

fluences mass, damping and stiffness of the shell.

Figure 7 showed the effects of the velocity of fluid

on FRF of cylindrical shell. As the velocity of

Copyright (C) 2005 NuriMedia Co., Ltd.
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Fig. 6 Receptance of the shell with stationary fluid

the fluid increases, damping increases at reson-
ance and natural frequencies shift down. The
comparison with Nastran is not available since
Nastran cannot solve this kind of problem. If
the fluid velocity goes up over the critical veloci-
ty, the first resonance frequency becomes negative
and the system becomes unstable.

4. Conclusions

(1) A cylindrical shell conveying fluid with
uniform velocity was formulated by the finite ele-
ment method. A beam-like shell element is used
instead of conventional shell element. Further less
number of elements could be used by this method
compared with conventional shell type element.
The accuracy by this method was not inferior to
that by conventional shell type element.

e Az {3 VS
.01 4 v e - yme 28[MAS]
ey SOfYE]

!E”,-:}-!

1E 4 o ] i ]
1E-5 jl‘;\\\ /I\ ; ,

I Vg

ufF

1£-8 i ég‘
189 4
1E-10 " v
f+] H09 1000
Freq.[Hz|
(a) Radial component
i - v 0[mis]
183 {~emm ey m 26[Mig)
ov = B0imis] |
1E-4
TS

T
H00 1000
Fraa.fHa)

(b} Axial component

o

Fig. 7 Effect of fluid velocity on receptance of shell

{(2) The estimation of frequency response func-
tion of cylindrical shell was presented with ta-
king into consideration of the coupled effects of
internal fluid with uniform velocity. The results
by this method were compared with experiments
{Mazuch et al., 1996) and those by Nastran.

{3) The effects of effective thickness of the
internal fluid were estimated. The first ciroum-
ferential mode, the effective thickness was the
same as the shell element. The higher the mode
becomes, the thinner effective thickness was.

{4) The stationary fluid only had an added-
mass effect on the cylindrical shell. The internal
fluid with velocity had effects on the damping and
stiffness of the cylindrical shell. As the velocity of
the fluid increased, the stiffness decreased and the
damping increased, which make natural frequen-
cies lower and peak value smaller.

Copyright (C) 2005 NuriMedia Co., Ltd.
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