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Frequency Response Analysis of Cylindrical Shells Conveying 
Fluid Using Finite Element Method 
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A finite element vibration analysis of thin walled cylindneal shells conveying fluid with 

uniform velocity ts presented The dynamic behavior of thin walled shell is based on the 

Sanders' theory and the fired m cyhndllcal shell is considered as mVlsctd and mcomplessible so 

that at satisfies the Laplace's equation A beam-hke shell element is used to reduce the number 

of degrees o&freedom by restricting to the circumferential modes of cyhndrlcal shell An 

estimation of frequency response function of the pipe considering of the coupled effects of the 

mternal fluid is presented A dynamic couphng condition of the interface between the fired and 

the structme ts used The effective thickness of fluid according to circumferential modes is also 

discussed The influence of fluid velocity on the frequency response function ts illustrated and 

discussed The results by this method are compared with pubhshed results and those by 

commercial tools 
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1. Introduetion 

The dynamLc behavior of a cyhndrlcal shell 

conveymg fluid is a practical interest m the field 

of the power plants or oil plpehnes The struc- 

tural characteristics of cyhndncal  shells can be 

analyzed by the commercial softwaie such as 

Nastran The commercml software for structural 

analysis deals with inteina[ fluid as added mass 

However, the internal fluid with velocity has 

effects on not only mass but also damping and 

stiffness of the shell structure The added mass 

of the internal fluid changes accordmg to the 
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circumferential mode The pipe system with flmd 

flows has studied for a long tLme These studies 

dealt with pipes as Euler Bernoulh beam, Ttmo- 

shenko beam and thin cyhndrIcal shell The 

pipe which behaves hke a beam was surveyed 

by Paldoussls and Issld (1974) They discussed 

the dynamics and stabthty of pipes conveying 

fluid with various boundary conditions and a 

steady and a turbulent flow Gmsberg (1973) 

carried out the stablhty analyskS, based on the 

Floquet theory, of the pipe with a pulsating flow 

PaldoussIs and Sundararajan (1975) developed 

numei]eal methods to check whether a point hcs 

in the stable or the unstable region by calculatmg 

the determinant of a large matrix/ 'or every point 

in the parametaac space 

The dynamms o~ thin cylindrical shell is stu- 

died extensively by Donnell (1993), Love (1952) 

and Sanders (1963) These shell theories are used 

to solve the behavior of pipes conveying fluid 
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Mazuch et al (1996) studmd thm wailed shells 

m contact with mVlSCtd, incompressible fluid by 

fimte element method and experiment The natu- 

ral  frequencies and the mode shapes for the free 

v~bratlons of shell were computed and measured 

Jam (1974) investigated the dynamics of ortho- 

tropic cylindrical shell  He used the Love's shell 

theory and potential flow theory. A similar case 

for the compressible fluid was studied by Chen 

et al (1997) Selmane and Lakls (1997) presented 

the wbrat lon of an open amsotropm shell with 

flowing fired They investigated the influence of 

flowing fluad on the vibratmn of the shell Zhang 

et a1.(2001) presented the dynamms of the thin 

shell conveying fluid by applying Sanders'  thin 

shell theory He used the finite element method to 

analyze the shell and the fluid Lee et a1.(1999) 

developed the a nonlinear finite element program 

using 3-D degenerated shell element and the first 

order shear deformation theory to consider the 

large deformauon of the clamped laminated cy- 

hndracal shell Ryu et al (2004) investigated the 

stress on orthotropm composite cyhndrical  shells 

using the equanon of Donnell 's  theory and pres- 

ented the result as the stress concentratmn factor. 

However, most of previous works were interested 

m only the natural frequenoes or the stability 

analysis The frequency response characteristics 

of forced vibrataon of  the cyhndrmat shell con- 

veylng fluid have not been discussed. 

In this paper, a cylmdrmal shell conveying 

fluids is modeled by finite element method based 

on Zhang et al (2001) m order to develop the 

frequency response analysis of  the forced vibra- 

tion The dynamic behavior of cylindrical shell 

is assumed to satisfy the Sanders' thin shell theo- 

ry Th~ fluid io a~um~d to ~ti~fy th~ L ~ p l ~ ' ~  

equaUon. A beam-hke  shell element is used to 

reduce the number of nodes because shell element 

needs lots of nodes. A dynamm pressure of  the 

fluid is obtained from the compatlbdl ty condition 

that the radial  component of  the internal fluid 

and the shell structure has the same veloclty. This 

method does not need to generate meshes for the 

internal fluid because the pressure m the fluid 

is solved analytically The effective mass of the 

fired ~s obtained according to the orcumferentml 
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mode The velocity of flmd has effects on the 

damping and the stiffness of  the pipe The fre- 

quency response function of the pipe with taking 

into consideration of the coupled effects of  the 

flmd is presented Some numerical results by 

th~s method are compared with those by Nastran 

(2001), commercial structural analysis soft- 

ware, and experimental results of  prevxous work 

(Mazuch et a l ,  1996) 

2. F i n i t e  E l e m e n t  F o r m u l a t i o n  

2.1 Dynamics of cylindrical shell 

A cylindrical shell conveying Internal fluid ~s 

modeled as shown m Fig 1. The Sanders' thin 

shell theory is used to derive the equanon of 

motion of the cyhndncal  shell That is, the shell 

thmkness is infinitesimal in comparison with the 

radius of  curvature (1 e ,  R / h  > 10), the dxsplace- 

ment is small, and the shell wall thickness remains 

constant. The fimte element method is used to 

analyze the dynamics of  the cyhndrlcal shell 

containing flmd The kmetm energy, potentml 

energy and virtual work which are acting on 

element can be expressed as follows 

T, 1 r 

aw=f (3) 

r 

. . . .  J 

Fig. 1 
L 

A model of cyhndrlcaf shell conveying inter- 
nal fired 
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where p~ is pressure of  the fluid acting on the 

surface of  the cyhndrlcal shell and qn is external 

force acting to cyhndrlcal shell The relation of  

strain vector { s} and displacement vector { ZT) is 

given by 

{ e} = [B]{ z~ } (4) 

And, the relation of  stress vector { a} and strain 

vector { e} can be expressed by 

(s) 

where 

{a}={N=, Noo, Nxo, M=, Moo, Eo}r=[D]{e] 

OUx 
8x 

1 / 8uo , \ 

Sue + 1 Ou~ 
Ox R 30 

~'Ur 

~0 
1 OZUr 8Uo 

E ( ~ O  aO ) 
2 02u~ 3 Ouo 1 OUx 
R OxO~F2~R---O-~ - 2R 2 O0 

[D] = 

Eh vEh 
I-V ~ I-V 2 

vEh Eh 
i v2v21 v 2 

0 0 

0 0 

0 0 

0 0 

0 0 0 0 

0 0 0 0 

Eh 0 0 0 

Eh 3 vEh ~ 
0 o 12(l_v ) 12(t_v ) 

vEh ~ E~2 3 0 0 
12(]-I; ~) 2(1-0 ' )  

Eh 3 
0 0 t1 24(1+v) 

shell in axial, tangential and radial  direction 

The circumferential modes of axial and radial  

displacements are assumed as cos n 0 ( n = 0 ,  1, 

2, . ), and that of tangential mode is assumed 

as s l n n O ( n = O ,  t, 2, ..-) This assumption is 

reasonable for circular cross-section (Petyt, 

1990) Figure 2 shows the circumferential mode 

shapes according to the circumferential mode 

number (n).  This assumption makes it possible 

not to generate meshes in circumferential direc- 

tion, which gives the reduction of degree-of-  

freedom in finite element formulation This type 

of element is called beam-hke  shell element in 

this paper The beam-hke shell element generate 

meshes the same as beam element For  finite 

element formulation, the displacements in ele- 

ments should be expressed by shape function and 

nodal  displacements as follows 

/-baJ 

Uo:[N,(x) N4(x)]fu~ (8) 
k uo,~) 

u,=[Ns(x) N(x)  N s  N(x)] %' =[N~]{u,}0 (9) 

The radial displacement of cylindrical shell can 

be assumed to behave like a lateral displacement 

of a beam Thus, the shape function in Eq (9) is 

the same as that of lateral vibration of  a beam. 

The r  denotes the slope of Ur So, the 

displacements in elements can be simply written 

as follows" 

{ u } = { u ~  uo u r } r - - [ N s j ( z ~ )  (10) 

The shell element type could be used to formu- 

late the cyhndrlcal shell But it needs lots of  

element generation which cause the problems of  

memories and computations Let us assume the 

displacement of  a cylindrical shell by the follow- 

lng Fourler 's  cosine expansion 

~ = { u ~ c o s n O ,  u o s m n O ,  UrCOS nO} r (6) 

where Ux, uo and Ur are the displacements of 

n=0  n = l  n = 2  

Fig. 2 Circumferential mode shapes according to the 
circumferential mode number (n) 
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where 

Here, [AT,] is a shape functmn matrix and { ~} 

is a nodal  displacement vector Any shape func- 

tion, N.(i~-l ,  --, 8), can be defined by user 

Linear functions of shape functmns are used m 

th~s paper 

Substituting Eqs. (4), (5) and (10) into Eqs 

( [ ) - ( 3 )  gwes the mass, the stiffness matrix and 

the force vector of  the cylindrical structure as 

follows 

[ m]~ = ~aQ p~h [N.]  r [N, ]  dA~ 
(12) 

2rz I e T 

=o hR fo IN l EW ld de 

[k] ~=Qaa [B]  r [ D ]  [t3] dA~ 
(13) 

p 2 ~  g'le 
=Rio Jo [B]rED]EB]dxdO 

{ f } , =  fA [NS,]rp,MAS+ fA [N,]ZqsdA, (14) 

where On ts the density of  shell and R is a radius 

of cross section and h is a wall thickness The 

first term in Eq. (14) is the couphng effect of the 

fluid. The pressure Pe of  the fluid at the rater- 

face acts normally on the structure of  cylindrical 

shell The second term of Eq (14) Is eqmvalent 

force due to external distributed force qs 

2.2 Dynamics of internal fluid 
tt is assumed that the fluid in a cyhndrical 

shell is mcomplesslble, i r rotanonal  and lnVlsCld 

so that the behawor of fluid saUsfies the La- 

palce's equation. The Laplace's equation in cyhn- 

drical polar  coordinate is as follows 

r ~ 802 t-ox r Or 0 (15) 

where ~ IS the velocity potential of the fluid 

The velocity of fluid, ~, can be obtained from 

the relation ~ = 1 7 ~  A method of  separatmn of  

variable is used to solve Eq (15) The potential 

function ~s assumed as fol lows '  

09(r, & X, t )=~' (r )~ l (x ,  0, t) (16) 

The general soluuon g r ( r )  can be easily ob- 

tained by subsntuting Eq (16) into Eq. (15) as 

follows 

~( r )  =Ct]~(/tr) +C2Y.(,tr) (17) 

where C1 and C2 are constant Here, J~(Ar) and 

~ ( / l r )  denote the Bessel funcUon of  the first 

and second kind of order n In order to have 

finite value of pressure m the center of the cross- 

section ( r = 0 ) ,  C2 must be zero 

To be fully coupled between the shell and 

fluid, the radial velocities of  the shell and fluid 

must be the same at the interface Thus, the fol- 

lowing compatiblhty condmon can be obtained 

8~) _ ,)u,. t- U Offxr (18) v,-= Or 8t r~e 

Here, U ts the steady velocity of the fired Sub- 

stltutmg Eq (17) and Eq (18) into Eq (16) 

yields 

J.(mr) ( au, + U au, 
~(r, O. x. t)-3J.(AR)/Or \ at Ox ]~-e (19) 

This characteristic values. A, can be obtained 

flora the characteristm equation (Zhang et a l ,  

2001) The velocity of  internal fluid can be ob- 

tained from velocity potential function as fol- 

lows /'~ {vx U -Sx U 
= L 0 e  

~= Vo + 0 I r O0 + 0 (20) 
v~ 0 / 8 ~  0 

Or 

The dynamic pressure of the fluid can also be 

obtained from velocity potenual 

where p• is the density of flmd 

2.3 Coupled equation of motion 
The dynamm pressure of  fluid acting on the 

surface of cyhndrlcal shell can be obtamed by 

substituting Eq (9) and Eq (19) into Eq (21), 

which yields 
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( ) (22) 
ay. (,117)/ar, 

Substituting Eq (22) into Eq (14) and taking 

their ~eal part, the equatmn of  motmn of a cyhn- 

drlcal shell with taking into cons~deratmn of the 

coupled effects of  internal fluid yields 

+ ([k]~ + [k ] , )  { u }={f}~  (23) 

where, 

[rn]5= f p~[N~]r[N~]hsdA~. (24) 

[C]+=2U fAf .ra[N~] [Nsrj Ox hsdA~. (25) 

[k]s = _ U2fa" O[N,,.]Ox r O[N,,]Ox hsdAs (26) 

where [m]s, [k]s 1S g,ven by Eq (12) and Eq 

(13) Here, h• shows the effective thmkness of 

fired g~ven as follows 

J,, (aR) 
he = Re ( ),  n = | ,  2, (27) U~ ( ,tte) l ar 

The effecnve thickness of fired depends on the 

o~der of c~reumferentlal mode and the charac- 

teristic value The velocity of internal fluid makes 

effects on damping and stiffness matrix of  the 

structure of cyhndrlcal shell The stationary fired, 

velocaty U = 0 ,  acts only on mass mamx as an 

added mass 

2.4 Frequency response 
The eharactensuc value, 2, depends on the 

order, n, of circumferential mode And the effec- 

rive thickness of  t im& hf, given m Eq (27), 

depends on the characteristic value /1 Thus, the 

effective thickness, h~-, can be obtained according 

to the order n The coupled equatmn of motion of 

a cyhndrmal shell conveying ftmd, given m Eq. 

(23), must be solved according to the order, n, of  
cLrcumferentlal mode 

To calculate the frequency response functmn, 

let us assume the external harmomc force apphed 

to cyhndrlcal shell as 

{f},={f}e (29) 
The beam-hke  shell element can reduce the de- 

gree-of-freedom by assuming the clrcumferentmt 

modes Instead, the equatmn of moUon given in 

Eq. (23) should be solved for every circumferen- 

tial mode, n = 0 ,  1, 2, - - Refermg to Eq (23), the 

harmomc response of n - th  orde~ carcumferent,al 

mode, { u }., can be determined as the solution of 

the following algebram equatmn 

[ ( [# ]s+  [k ID -- o~2 ( [m] , .+  [m] ~) 
+]aJ[  c ] s ] . {  u } . = { f  }~ (30) 

where, 

uo . ,  

Since equatmns of  moUon are given by the 

superposmon of the solution according to the 

order, n The displacement of a cyhndncal  shell 

can be obtained as follows 

Ux=~U..COSnOe,(~o, x..) (31) 
~--0 

uo = ~ zT0,, s m  hoe "~~ (32) 

u . =  ~. fi,~ cos hoe '(~ (33) 

The frequency response functmn (F R F ) can be 

estimated from Eq (30) by semng external force 

equal to unity 

3. Numerical Examples 

A straight cyhndncat  shell with length L =  

0 231 m, radms R = 0  07725 m and thickness h = 

0 0015 m was considered as a rmmermal model 

The mater~al of shell was taken as steel with 

density p~=7800kg /m ~, Pmsson's rauon v - - 0  3 

and Young's Modulus E = 2 , 0 5  • 10 II N/m z The 

first case was a shell not containing fired The 

second case was a shell containing stationary 

fired The results by the presented method in the 

first and second case were compared w~th those 
by Nastran Final  case is a shell with the internal 

fired whmh has uniform velocity All  cases have 

clamped-free boundary condmons as shown m 

Fig 3 
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T a b l e  1 Degree offreedom of analysis model 

Nastran 
Presented 

shell element 

36 
The number of 

circumferential node 

The number of axial trade 

The number of total node 

D.O.F per node 

Total D.O.F of model 

21 21 

756 21 

5 4 

3780 48 

7 , 1 7 ~  

J:i:! i !i 
, �9 ,=!-iltp: L l 

:!::(:i::i7 t:::! 
~, . t . . .b .~ . .+ . .+ . . . .~ . .+ . . ,  

...... I . . .} + ~ , ~ i  ~, ~ +..,....I 
~ = t I  :+;l ~ ' " *  ~ 4" ............... • 

i. ....................................... 

T a b l e  2 Natural frequency of the shell without fluid 

Mode Natural Frequency [Hz] 

m n 

1 3 

l 2 

1 4 

1 5 

2 4 

1 1 

2 5 

2 

1 

2 

Experiment 
(Mazuch etal., 

1996) 

Nastran 
(shell element) 

Presented 
(beam-like 

shell element) 

616 645 635 

708 818 816 

945 983 948 

1479 1572 1480 

1628 

1851 

1969 

1709 

1824 

1939 

2074 

2349 

2581 

2151 

1657 

1827 

1844 

2039 

2154 

2387 

(a) Nastran (b) Presented model (beam- 
(shell element) like shell element) 

Fig. 3 Element Type used in Numerical example 

Figure 3 shows the element type used in the 

numerical example. The shell dement used in 

Nastran has 5 degree of freedom per node and 

needs additional division into 36 elements in 

circumferential direction. But the presented mo- 

del doesn't need the circumferential element and 

has 4 degree of freedom per node. The reason is 

that the presented model has assumed the circum- 

ferential mode analytically. Table 1 shows the 

number of nodes and degrees-of fieedom used 

for the analysis. The cylindrical shell was divided 

equally into 20 elements in the axial direction 

for both Nastran (shell element) model and the 

presented (beam-like shell element) model�9 So, 

the number of degree-o~freedom by the present- 

ed method was further less than that by Nastran. 

Instead, the presented method must solve the 

equations of" motion for every order of circum 

ferential mode, n = 0 ,  1, 2, .... 

3.1 A c y l i n d r i c a l  s h e l l  w i t h o u t  fluid 

Table 2 showed the results by the experiments 

(Mazuch et al., 1996), Nastran (2001) and the 

presented method. Here, n is the order of a cir- 

cumferential mode and m is the order of an axial 

I .  

o.1 

o.o l  

, s  

7, 
1 E.(* 

E'7 

~L,11 

Fig .  4 

3 .... r l=~' 

�9 n ~  

�9 n~-4. 

i 1 i,i 
. , ~  ' v / 2 r  ~, , / ' ~ . . / \ .  ',. 

, A . ~ . , ;  L" . . . . . . . .  .i"r ..... ,s " " 

L 2 2 1 ~ 2 Z _ - .  + . . . .  _ 2  

' i ' . . r  i ' ,  

A typical receptance of the shell according to 

the order of n circumferential mode 

mode�9 Calculating results correspond well with 

experimental results. Therefore, natural frequen- 

cies of the shell can be obtained effectively by 
using a few elements. Figure 4 showed the F.R.F. 

of the shell according to the order of the cir- 

cumferential mode. An external force in radial 

direction, Fr, was applied on cylindrical shell 

and receptance (displacement/force) was obtain- 

ed at the driving point. Figure 5 showed the 

comparison of the F.R.F, with the presented 

method and Nastran. The summation of the 

receptances shown in Fig. 4 is equal to the solid 

line in Fig. 5. The presented method showed the 

Copyright (C) 2005 NuriMedia Co., Ltd. 



Frequency Response AnaD~sis of Cylindrical She/ls Conveying F/uid Using Finite Element Method 631 

,] 
a ~ �9 

1 [ .3  �9 

H :  :, 

~E 9 

tK  

11 ?. 

~F q 

{) $ 

0 r  

l i :  1 

I s  t 

1~ . 5 .  

1 [: P 

IE" , ' .  

Pi~;;;~idi ' 

~ �9 , : / ,-  ..~ / ,,, 

.. I ;i )' F:', 

(a) Radial component 

�9 P / ' ~ g o r d , ~ d  i 

............ t~.a ~'f, a~ i 

j : ! 

~,~ , ,' ~ , - . . .  < ) "s , ; , ~  ; 

] 
i f  ~ 6 .  

";"~b ! [3~ ~, ' 5.K" 2 r163 

~" r e ~  t * ' i z l  

{b! Axial component 

Fig. 5 Receptance of the empty shell 

"fable 3 Natural  frequent) of the shell with station- 

at> fluid 

Mode 

111 11 

1 3 

1 2 

1 4 

1 1 

1 5 

2 4 

2 5 

T-3 
1 6 

2 6 

Natural I-requency iHz] 

Experiment 

Mazuch et aL, 
1996) 

388 

421 

628 

1027 

1094 

1299 

1245 

1546 

1748 

Nastran 

(shell element) 

Presented 

(beam-like 

shell element) 

404 373 

480 434 

652 602 

1036 883 

1(/92 996 

1140 1054 

1360 1242 

1306 1202 

1699 1515 

1885 1680 

Table 4 Effective thickness according to the order of 

circumferential mode 

1 1000 

0,500 

3 : 0.333 
- - -  I 

4 I 0.251 

5 I 0202 

reasonable  results 101" both  radial  and  axial com- 

ponen t  compar ing  with the results by Nast ran.  

The discrepancy of F.R.F.  is due to the dis~ 

crepancy of na tura l  frequencies s h o w n  in Tab le  2. 

3.2 A cy l indr i ca l  she l l  w i t h  s t a t i o n a r y  f lu id  

In case that  the shell  is con t a in ing  s ta t ionary  

fluid, the fluid has an effect on  the s tructure of  

cyl indrical  shell as an added mass+ "[able 3 show- 

ed that  the na tura l  fi-equencies decreased for all 

modes  c o m p a r i n g  with the empty shell. The  nu- 

merical  results co r respond  well with exper imenta l  

results (Mazuch  et al., 19961. Table  4 showed  

the thickness  (h / )  of fluid which  has the eltect as 

an added mass accord ing  to the c i rcumferent ia l  

mode. At the first c i rcumferent ia l  mode,  the thick-  

ness of fIuid was the same as the radius  of  shell. 

It means the fluid acts entirely on the added mass. 

But, the h igher  the c i rcumferent ia l  modes,  the 

less lhe effective thickness of fluid acts on the 

s h e l l  F igure  6 shows the F.R.F. by N a s n a n  and 

the presenled method.  The results have a little dif- 

ference. The  reason is that  N a s t r a n  and  the pres- 

ented method have a dif lerenee cons ider ing  the 

effect of the internal  fluid. The  added  mass of the 

fluid is considered to be cons tan t  in Nas t ran ,  but 

in this paper,  not  only the added mass but  also the 

stiffness and  tile d a m p i n g  vary accord ing  to the 

c i rcumferent ia l  mode. 

3.3 T h e  e f f e c t s  o f  v e l o c i t y  o f  i n t e r n a l  f lu id  

on F R F  and n a t u r a l  f r e q u e n c y  

W h e n  the fluid has  a cons tan t  velocity, it in- 

fluences mass, damping  and  stiffness of the shell�9 

F igure  7 showed the effects of  the velocity of fluid 

on F R F  of  cyl indr ica l  shell�9 As the velocity of  
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.4" 

~..k" 

0(11 - 

~..~. 

IE6, 
1[%7, 
1E ,8 ,  

1E 3 1 

~E.6 

1E'7 1 

1E'~' 1 1E.30 

P r e ~ e m e d  i 
N a ~ l t a n  } 

5 ~  T ~ . . . .  r i 

~req [Hz] 

(a) Radial component 

i 

Fig. 6 

Freq.tHz[ 

(b) Axial component 

Receptance of the shell with stationary fluid 

s 
IF..4. 

I [ ' - ! ~  

~ V.+.% 

1["4" 

~E'5 
1E'6 

IE.'a 
1E.-9 

IE-IG' 

Fig. 7 

I ~ -  w= O [mfsl] 
. . . . .  ~ 2 s [ m t ~ i l  
....... v= 50lmff,] t 

I 
i ' ,  5gg 1 

Freq.[Hz] 

(a) Radial component 
e 
�9 v =  

t . . . . . . .  v = 
0 [mfsl 

26[mtsl 
'J . . . .  v = 5 0 [ m e s l  

Fre~.[Hzl 

(b) Axial component 

Effect of fluid velocity on receptance of shell 

the fluid increases, damping increases at reson- 

ance and natural frequencies shift down. The 
comparison with Nastran is not available since 

Nastran cannot solve this kind of  problem. If 

the fluid velocity goes up over the critical veloci- 
ty, the first resonance frequency becomes negative 
and the system becomes unstable. 

4. Conclusions 

(1) A cylindrical shell conveying fluid with 

uniform velocity was formulated by the finite ele- 

ment method. A beam-like shell element is used 

instead of conventional shell element. Further less 
number of  elements could be used by this method 
compared with conventional shell type element. 
The accuracy by this method was not inferior to 
that by conventional shell type element. 

(2) The estimation of frequency response func- 

tion of  cylindrical shell was presented with ta- 

king into consideration of the coupled effects of 

internal fluid with uniform velocity. The results 

by this method were compared with experiments 
(Mazuch et al., 1996) and those by Nastran. 

(3) The effects of  effective thickness of the 

internal fluid were estimated. The first circum- 
ferential mode, the effective thickness was the 
same as the shell element. The higher the mode 
becomes, the thinner effective thickness was. 

(4) The stationary fluid only had an added- 

mass effect on the cylindrical shell. The internal 

fluid with velocity had effects on the damping and 
stiffness of the cylindrical shell. As the velocity of  
the fluid increased, the stiffness decreased and the 
damping increased, which make natural frequen- 
cies lower and peak value smaller. 
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